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Abstract

Here is presented a method that is able to detect fouling during the service of a circulation electrical heater. The

neural based technique is divided in two major steps: identification and classification. Each step uses a neural network,

the connection weights of the first one being the inputs of the second network. Each step is detailed and the main

characteristics and abilities of the two neural networks are given. It is shown that the method is able to discriminate

fouling from viscosity modification that would lead to the same type of effect on the total heat transfer coefficient.

� 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Circulation electrical heaters are widely used in many

processes [1–4]. To reduce the response time of some

heaters, it is possible to generate the Joule effect in the

tube wall. In that case the temperature difference be-

tween the product to be heated and the heater is small.

This property is used to sterilize milk without giving it a

disagreeable taste. It is also used when high tempera-

tures are required. For example, the air that is needed in

blast furnaces can be heated to about 1,400 K to in-

crease the efficiency of the chemical reactions. The small

temperature difference between the air and the tubes

reduces the risk of creeping for the heating tubes. In all

cases it is necessary to have an accurate model of the

heater to make the control very efficient [5]. But in many

cases fouling may occur in the heater. As it is well

known that this could be harmful [6,7], different ap-

proaches are developed to tackle the problem of fouling.

The first one tries to avoid fouling using electronic de-

vices [8–10], the second one tries to avoid fouling using

adequate geometries [11] or surface treatment [12,13].

The last approach is to try to detect fouling itself. The

classical approach for fouling detection is to measure the

thermal resistance [14]. In this case it is necessary to

introduce temperature sensors in the studied system. An

ultrasonic technique has also been tested [15]. For these

last two methods, only few points could be monitored in

practice. Non-intrusive methods are developed such as a

recirculation loop used by Asomaning and Watkinson

[16]. It is also possible to use models for fouling, e.g.

[17], and to use these models in heat exchangers com-

putation [18,19].

This shows that there is a need for a global moni-

toring system. In a first step towards this goal, the aim of

the present study is to show the feasibility of the detec-

tion of fouling in an electrical circulation heater using

the actual service data (obtained by simulation for this

study).

As neural based techniques have proved to be effi-

cient in identification of thermal systems [20–25], in

identification of large systems [26], in estimation or

modeling of fouling in some chemical processes [27,28]

and in drifts detection [29,30], it has been chosen here to

develop such a technique for online fouling detection.

First, the governing equations of transient states

are presented. It is shown that only two dimensionless
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parameters are required to fully characterize a circula-

tion electrical heater. It is also shown that to be able to

detect fouling, it is necessary that the model takes into

account simultaneous variations of the mass flow rate

and of the heat rate. Then the principles of online drifts

detection using coupled neural networks are presented.

The analysis is then divided in two major steps: the first

step is ‘‘online identification’’, the second step is ‘‘sur-

veying and classification’’. In the first step, identification

is studied through the influence of the size of the iden-

tification window. In the second step, the connection

weights of the first network are determined for 17 con-

figurations (normal functioning, four fouling stages,

four fluid characteristics modifications, eight fouling and

fluid characteristics modifications). Then the classifier,

that is based on pattern recognition techniques, is in-

troduced. The inputs of this classifier are the connection

weights of the first network. Its main abilities are: un-

supervised learning and self-adaptation of its architec-

ture; this second network is able to create, on its output

layer, new neurons that characterize new kinds of devi-

ations. This ability is used to discriminate the different

sets of connection weights that are obtained for fouling

and fluid characteristics modifications.

2. Governing equations

Circulation electrical heaters in which the heat is

created by the Joule effect in the tube walls are usually a

combination of several tubes. These tubes are coupled in

such a way that they are in parallel for the flow (and in

any arrangement for electricity). So, it is only necessary

to study the behavior of a single tube. A schematic of the

tube is shown in Fig. 1.

In general, the thermal resistance between the fluid

and the tube is much higher than the thermal resistance

of the tube itself. So, it is possible to assume that the

variation of the temperature is negligible along the ra-

Nomenclature

A heat exchange area (m2)

Ci class #i detected by the classifier

c specific heat (J/kg K)

DðPj; IÞ distance between prototype Pj and input

vector I (classifier)

ec thickness of fouling (m)

I input vector (classifier)

L length of the heater (m)

no number of regressors for the output (first

network)

ni1 number of regressors for the first input (first

network)

ni2 number of regressors for the second input

(first network)

nc number of neurons in the classifier output

layer

np number of neurons in the classifier hidden

layer

nw number of neurons in the classifier input

layer

Pj prototype of the classifier

Qv volumic heat source (W/m3)

R dimensionless parameter

r1 inner tube radius (m)

S dimensionless parameter

T temperature (K)

t time (s)

tþ dimensionless time

V volume per unit length (m3/m)

w fluid velocity (m/s)

x abscissa (m)

xþ dimensionless abscissa

Greek symbols

a heat transfer coefficient (W/m2 K)

h dimensionless temperature

u regression vector

k thermal conductivity (W/m K)

l activation function (classifier)

W membership degree of a prototype to a class

(classifier)

q density (kg/m3)

r size of the influence of a prototype (classi-

fier)

Subscripts

c clogging (fouling)

f fluid

i inlet or input

nom nominal

o outlet or output

t tube

Fluid flow

Electrodes

Tube

Fig. 1. Schematic of the studied circulation electrical heater.
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dius in the tube wall. Likewise, conduction in the axial

direction of tube is assumed to be negligible as is done in

the study of heat exchangers [31]. The fluid temperature

is supposed to be uniform in a cross-section of the tube;

so, it depends only on the distance to the inlet. The tube

is supposed to be well insulated. So, the heat losses to

the ambient air are neglected. Under these assumptions,

two energy balances can be written; the first one (Eq.

(1)) for the tube; the second one (Eq. (2)) for the fluid.

aA
L

ðTt � TfÞdxþ Vtqtct

oTt

ot
¼ QvVt dx ð1Þ

aA
L

ðTt � TfÞdx ¼ Vfqfcf

oTf

ot

�
þ w

oTf

ox

�
dx ð2Þ

The heat transfer coefficient is computed as follows:

1

aA
¼ 1

ac2pðr1 � ecÞL
þ 1

2pkcL
ln

r1

r1 � ec

� �
ð3Þ

where ac is computed using the following correlation:

Nu ¼ 0:023Re0:8Pr1=3.

Extracting Tt from Eq. (2) and introducing it in Eq.

(1), leads to the governing equation (Eq. (4)).

½Vfqfcf þ Vtqtct�
oTf

ot
þ wVfqfcf

oTf

ox
þ Vtqtct

L
aA

Vfqfcf

o2Tf

ot2

þ Vtqtct

L
aA

Vfqfcfw
o2Tf

oxot
¼ QvVt ð4Þ

To make Eq. (4) dimensionless, the following reduced

variables can be introduced:

xþ ¼ x
L
; tþ ¼ t

L=w

and h ¼ Tfðx; tÞ � Tfi

TfðL;þ1Þ � Tfi

;

with TfðL;þ1Þ ¼ QvVtL
wnomVfqfcf

þ Tfi:

Then two dimensionless parameters appear: R¼ðVtqtctÞ=
ðVfqfcfÞ and S¼ðVtqtctwÞ=ðaAÞ.

Note that the ratio R=S is the number of transfer

units ðNtuÞ of the traditional heat exchangers.

Finally, it is possible to write the desired equation

(Eq. (5)).

ð1 þ RÞ oh
otþ

þ oh
oxþ

þ S
o2h
otþ2

þ S
o2h

oxþotþ
¼ 1 ð5Þ

It is important to note that the dimensionless tempera-

ture, based on the nominal velocity, might be greater

than unity. It is also important to note that, in the

studied case, it has been considered that the mass of the

fouling material is much lower than the mass of the tube

and of the fluid. Hence, parameter R is considered as

constant.

On the contrary, parameter S varies with the mass

flow rate through the fluid velocity itself w and through

the heat transfer coefficient a. The variations of pa-

rameter S through the heat transfer coefficient could

have many origins according to Eq. (3), e.g. the varia-

tion of the fluid viscosity or the variation of the fouling

thickness.

To discriminate the influence on parameter S of the

variations of the mass flow rate from the influence of

fouling or viscosity modification, the model that detects

drifts should be independent of the mass flow rate (the

variation of a with the mass flow rate is then already

taken into account). Hence, it is necessary to get a

multiple inputs single output (MISO) model. In our

case, the inputs are the mass flow rate and the heat rate,

and the output is the outlet fluid temperature. To show

that fouling influences the behavior of an electrical cir-

culation heater, it is informative to plot (Fig. 2) the re-

sponses of a heater with and without fouling for the

same solicitations (mass flow rates and heat rates). The

solutions are computed using a finite difference scheme.

It is also important to note that the present study is

based on the numerical resolution of Eq. (5). So, the

inputs of the neural network would have been ‘‘clean’’

data. In practice, noise would be present in the data and

the identification technique should be noise-insensitive.

It can be shown that neural based techniques have this

ability as far as the noise is not correlated with the input.

Considering an arbitrary second order system, consid-

ering a random input sequence, an output sequence is

obtained. A first neural network is trained using this

couple of data. Then, noise is added to the output se-

quence: random noise that is proportional (20%) to the

mean value of the outputs, combined with a random

noise that is proportional (20%) of the instantaneous

output. A second network is trained using the input

sequence and the new noisy output sequence. Finally,

considering a new random input sequence, the output

sequences of both networks are compared. Fig. 3 shows,

on the left-hand side, the output sequences that are

0.0

0.2

0.4

0.6

0.8

1.0

1.2

100 120 140 160 180 200

Dimensionless temperature

Normalconditions

Fouling

Time (s)

Fig. 2. Responses of a heater with and without fouling.
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taken into account for the training of the networks and

on right-hand side the outputs that are obtained when

considering the second input sequence. The RMS error

being less than 0.5% of the mean value of the clean data,

it can be concluded that the neural based technique is

actually noise-insensible.

3. Principles of drifts detection

The detection technique is based on coupling online

identification with connection weights surveying as de-

scribed now. Fig. 4 shows a schematic of the supervision

system that is used in the present study.

The system consists of two neural networks. The first

neural network is based on the principles of non-linear

online identification. Using the past input and past

output data stemmed from the system, the neural net-

work adapts its architecture (adapts the weights between

the different neurons) in order to model the system to be

surveyed. Generally, for MISO systems, the output is

made of one neuron that is the present estimated output.

Identification is always made during the service of the

system. So, the connection weights are representative

characteristics of the model of the system in its current

state. As it is possible to consider the architecture of this

first network as an accurate black-box model of the

actual system, it is possible to detect any deviation of the

real system by surveying the evolution of the neural

architecture.

The second network is based on pattern recognition

techniques. Its aim is to detect the evolution of the

model and recognize the cause of the deviation. The

inputs of this classifier are the connection weights of

the first network. This classifier is characterized by its

main abilities: unsupervised learning and self-adaptation

of its architecture. It is able to create, on its output layer,

new neurons that would characterize new kinds of de-

viations.

4. Online identification

The neural based online identification has been pre-

sented in [32–36]. Fig. 5 summarizes the identification

process:

Each step of the identification process is detailed

below for the identification of the circulation electrical

0 20 40 60 80 100
0.6

0.8

1

1.2

1.4

1.6

1.8

2

sample #

Noisy data (shifted by 0.25)

Clean data

0 20 40 60 80 100
0.6

0.8

1

1.2

1.4

1.6

1.8

2

sample #

Outputs obtained using the ANN
trained on noisy data (shifted by 0.25)

Outputs obtained using the
ANN trained on clean data

Fig. 3. Illustration of the insensibility of the neural based identification technique.

)t(ŷ

First network

Online
Identification

Second network

Supervision and
diagnostic

Inputs
Warning, Fault, …
Deviation,
Classification,
Failure detection,
Human Machine Interface

Outputs

Fig. 4. Architecture of the drifts detection system.

2448 S. Lalot, S. Lecoeuche / International Journal of Heat and Mass Transfer 46 (2003) 2445–2457



heater. This identification is carried out when the heat

rate is randomly changed at random times. Fig. 8 gives

an example of the response.

4.1. Description of the studied heater

The present study is based on an actual 10 kW water

heater. This heater is made of stainless steel and has the

following characteristics:

This leads to the following values for R and S (for

nominal velocity): R ¼ 0:27, S ¼ 1:5. In order to get

significant temperature variations, the following ranges

have been chosen:

0% < heat rate ðinput #1Þ < 100%;

0:6 m=s < velocity ðinput #2Þ < 1 m=s;

2 s < random duration for stages < 10 s:

In this case the mean value of the duration of the stages

is 6 s.

4.2. Determination of the structure of the model

According to previous works [37,38], the neural net-

work output error (NNOE) model is tested (cf. [35] for

details on this architecture). The structure that is looked

for is the simplest one that gives accurate results; a

classical three layers network. The influence of the

number of neurons in the hidden layer is studied along

with the influence of the composition of the regression

vector ½ n0 ni1 ni2 � ¼ ½number of considered outputs,

number of considered inputs #1, number of considered

inputs #2�.
Once the model is chosen, it is necessary to determine

the number of neurons in the hidden layer. Table 1

shows the values of the relative Euclidean distance be-

tween the models and the real system for three numbers

of neurons in the hidden layer.

It can be seen that the values of the distance are in-

dependent of the number of neurons in the hidden layer.

It can be concluded that a unique neuron in the hidden

layer is sufficient.

4.3. Determination of the composition of the regression

vector

Fig. 6 shows the typical evolution of the distance

between the estimated and known outputs versus the

composition of the regression vector; in all cases the

number of past estimated outputs, of past heat rates and

past mass flow rates are equal (1, 2, 3, 5, 10).

Tube Fluid

Inside Ø 14 mm Nominal velocity 0.8 m/s

Outside Ø 16 mm Inlet temperature 20 �C
Length 1 m Heat transfer

coefficient

Colburn

correlation

Determination of the structure of the model

Determination of the number of past samples (inputs and/or outputs)
used as regressors

Learning phase Test phase

Exploitation phase

Fig. 5. Schematic of the identification process.

Table 1

Evolution of the distance between the models and the real

system versus the number of neurons

Number of

neurons in the

hidden layer

Composition of

the regression vec-

tor ½ no ni1 ni2 �

Distance

1 ½ 2 2 2 � 1 (reference)

½ 3 3 3 � 1.0013

½ 5 5 5 � 1.0002

½ 10 10 10 � 0.9999

2 ½ 2 2 2 � 1

½ 3 3 3 � 1.0013

½ 5 5 5 � 1.0002

½ 10 10 10 � 0.9999

3 ½ 2 2 2 � 1

½ 3 3 3 � 1.0013

½ 5 5 5 � 1.0002

½ 10 10 10 � 0.9999

5.0E-04

5.2E-04

5.4E-04

5.6E-04

5.8E-04

6.0E-04

6.2E-04

6.4E-04

6.6E-04

6.8E-04

7.0E-04

[ 1 1 1] [2 2 2] [3 3 3] [5 5 5] [10 10 10]

Composition of the regression vector

Distance between the model and the real system

Fig. 6. Distance between the model and the real system versus

the composition of the regression vector.
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It can be concluded that a regression vector built

using two past estimated outputs, two past heat rates

and two past mass flow rates is sufficient, no significant

improvement being noticed using larger regression vec-

tors. It is interesting to remind that, on the one hand, it

has been shown [39] that circulation electrical heaters

can be considered as second order systems when re-

sponding to fluid flow variations, and on the other hand,

it has also been shown that they can be considered as

second order systems when responding to heat rate

variations [23].

4.4. Learning and test phases

It is during these phases that the size of the obser-

vation window (Fig. 7) has to be determined. The width

of the identification window is considered as a parame-

ter that has to be optimized for a fixed offset. It has been

chosen here to fix the offset to the width of the window.

As can be seen the whole learning database is 6000 s

long. This corresponds to thousand times the mean va-

lue of the duration of the stages. The width of the

identification window varies from 30 to 120 s (i.e. 5–20

times the mean duration of the stages).

Fig. 8 shows the evolution of the mean value of

weight #1 versus the number of identifications and the

histogram of instantaneous values of this weight. Note

that the mean value for identification #n takes into ac-

count the values of the weight from the first identifica-

tion to the nth identification.

It can be seen that convergence is not obtained for

30 s. It can also be seen that the wider the identification

0 1000 2000 3000 4000 5000 6000
0

0.5

1

1.5

Time (s)

200 220 240 260 280 300 320 340 360 380 400
0

0.2

0.4

0.6

0.8

1

1.2

Observation windows

Width of the observation windows

Dimensionless temperature

Whole learning database

Fig. 7. Definition of the width of the observation windows.
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window, the thinner the histogram but the longer the

computational time (for a constant sample period ¼ 1

s). So, to choose the identification window width, it is

interesting to look at the final value of the weights. Table

2 shows the final values of the first two weights de-

pending on the window width.

It can be seen that whatever the window width is (but

larger than 10 times the mean duration of the stages), an

accurate value of the weight is obtained (the differential

between a weight and the mean value of this weight is

less than 1%). To make a compromise between the

quality of the histogram and the computational time, a

window width of 90 s (15 times the mean stage duration)

is chosen. For this value, it is possible to show that all

weights have converged (Fig. 9). The analysis of the

histograms shows that the results are accurate.

Now that the width of the identification window is

determined, it is possible to go on with the exploitation

phase.

4.5. Exploitation phase

The exploitation phase is the final goal of the iden-

tification step. In this study, arbitrary fouling has been

introduced in the model. Its thickness varies from 0 to 2

mm in four evenly spaced steps, and its thermal prop-

erties are those of calcium.

For fouling detection, it is necessary to know the

values of all weights for each fouling stage (Fig. 10).

To know if these values actually characterize fouling,

it is interesting to compare them with the values of the

weights when the variations of the equivalent heat

Window width (s) Mean value of weight #1 Histogram of weight #1

30

1.755
1.760

1.765
1.770

1.775
1.780

1.785
1.790

1.795
1.800

0 50 100 150 200 250
1 2

60

1.750
1.760

1.770
1.780

1.790
1.800

1.810
1.820

1.830
1.840

0 50 100 150 1 2

90

1.770
1.780
1.790
1.800
1.810
1.820
1.830
1.840
1.850
1.860
1.870
1.880

0 20 40 60 80 1 2

120

1.770

1.780

1.790

1.800

1.810

1.820

1.830

1.840

0 20 40 60 1 2

Fig. 8. Evolution of the mean value and of the histogram of weight #1 for various window widths.

Table 2

Final values of weight #1 and #2 versus the width of the

identification window

Window width

60 s 90 s 120 s

Weight #1 1.77873 1.78888 1.77925

Weight #2 )0.78905 )0.79890 )0.78980
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transfer coefficient is caused by another phenomenon. It

has been chosen here to act on the viscosity of the fluid.

The higher the viscosity, the lower the heat transfer

coefficient. Fig. 11 shows that the effect of viscosity is

similar to the effect of fouling.

Even though the effects are similar, the values of the

weights are different; Fig. 12 shows the values of the

weights in both cases. The maximum viscosity ratio has

been fixed to 4 (this corresponds [40] to a temperature

change of 20� for oil at about 310 K, of less than 30� for

glycerin at 310 K), and the maximum fouling thickness

is kept to 2 mm.

The dimensionless increase is the ratio of the present

increase to the maximum increase (in four steps) taken

into account for the parameters. The combination of

fouling and viscosity increase leads to other sets of val-

ues as shown in Fig. 14, where step 0 represents the

normal conditions and each step corresponds to a step

of viscosity (increasing viscosity) and a step of fouling

(increasing thickness).

The last set of connection weights is determined when

the viscosity decreases and when fouling occurs (Fig.

13).

The role of the second network is to analyze the data

that have been obtained during the online identification.

It has to answer the question: ‘‘Are all the combinations

of the connection weights different?’’. In practice, other

drifts could appear (others sets of connection weights

1.770
1.780
1.790
1.800
1.810
1.820
1.830
1.840
1.850
1.860
1.870
1.880

0 20 40 60 80

Number of identification

Weight #1

-0.880
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-0.820

-0.800

-0.780

0 20 40 60 80

Number of identification

Weight #2

0.000
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0.010

0.015

0.020

0.025

0 20 40 60 80
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Weight #3

-0.016
-0.014
-0.012
-0.010
-0.008
-0.006
-0.004
-0.002
0.000

0 20 40 60 80

Number of identification

Weight #4

-0.008
-0.006
-0.004

-0.002
0.000
0.002
0.004

0.006
0.008
0.010

0 20 40 60 80

Number of identification

Weight #5

-0.016
-0.014
-0.012
-0.010
-0.008

-0.006
-0.004
-0.002
0.000

0 20 40 60 80

Number of identification

Weight #6

Fig. 9. Convergence of all weights.
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Fig. 10. Compared effects of viscosity and fouling on the weights.
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would appear), the evolutions would be continuous. So,

it should be necessary to use a auto-adaptive classifier.

In the present study, such a powerful classifier is used

to show the feasibility of online fouling detection. In a

first step, during an unsupervised phase, it is shown that

the classifier is able to detect the 16 sets of connection

weights that correspond to the 16 drifts. It is important

here to remind that it is not an obviousness that fouling

and viscosity change (that have similar effects on the

outlet fluid temperature) correspond to different sets of

connection weights. In a second step, the classifier is

‘‘frozen’’ and is used as a ‘‘normal’’ (non-adaptive)

classifier.

5. Principles of unsupervised classification

Generally speaking, classification aims at grouping

similar objects into classes. Two cases are conceivable.

In the first case, the number of classes to be created is a

priori known; a classical classifier is efficient. In the

second case, the number of classes is a priori not known;

the classifier should be able to create new classes cor-

responding to totally new objects. This leads to choose a

classifier which has unsupervised learning abilities and

which is also able to create new prototypes.

In our case, the objects are the connection weight

vectors coming from the first network and the classes are

the types of deviations that are studied. For example,

normal fluid (nominal viscosity) flowing in a clean cir-

culation heater makes one class (small variations are

possible around the nominal functioning point); normal

fluid flowing in a heater in which fouling occurs makes a

second class; high viscosity for the fluid flowing in a

clean heater makes a third class, and so on. Hence, it has

to be considered that the number of classes is a priori

not known. This is why the study focuses on classifiers

which have special abilities (unsupervised learning and

auto-adaptative architecture).

To unify the identification and the classification

process, it has been chosen here to use a neural based

classifier. As a basis, it has been chosen to use the cluster

detection and labeling network (CDL) developed in

1998 by Eltoft and deFigueiredo [41]. For this classifier,

the input vectors are compared with known ‘‘proto-

types’’, then, in a second step, these prototypes are

grouped into classes. Improvements have been brought

by Lurette and Lecoeuche [42]. The new architecture is

represented in Fig. 14.

The input layer consists of as many neurons as

components of the input vectors. The hidden layer is

totally connected to the input layer. Each neuron of the

hidden layer represents a prototype of a class. The
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Fig. 11. Compared effects of viscosity and fouling on time re-

sponse.
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Fig. 12. Combined effects of viscosity and fouling on the weights (viscosity increase and fouling).
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output layer consists of as many neurons as detected

classes. The comparison between an input vector I and a

known prototype Pj is made using the following acti-

vation function: lðI; PjÞ ¼ expð�ð1=2r2
j ÞDðI ; PjÞÞ, where

rj is linked to the sensibility of the classifier. The smaller

rj, the higher the sensibility. The membership degree of

an input vector to a class is defined as follows:

wðI ;CiÞ ¼ maxð1;
P

Pj2Ci
lðI ; PjÞÞ. The learning and the

adaptation of the network are made in three stages as

shown in Fig. 15.

The first and main stage is called ‘‘classification

without fusion’’. The particularity of this stage is to

make possible the creation of a new prototype if the

presented input vector is far from all the known proto-

types. Similarly, a new class is created when a newly

created prototype is very different from the already

known prototypes. All the cases that have to be con-

sidered during this stage are summarized hereafter (Fig.

16):

The ‘‘class fusion’’ stage regroups classes that are

close in the space representation. Each time an ambi-

guity is detected during the previous stage, the ‘‘class

fusion’’ stage resolves it by merging the concerned

classes. The ambiguous prototypes are associated to the

new class. The output layer is modified by the elimina-

tion of the neurons that defined the ambiguous classes in

order to keep a unique neuron (one neuron per ambi-

guity); this neuron being the result of the merged classes.

The ‘‘class evaluation’’ stage makes possible the

characterization of the different classes in order to

modify thresholds that are used in the computation. For

example, a threshold could be used to eliminate classes

containing too few assigned prototypes. These proto-

types are marked as ‘‘unclassified’’, the similarity thresh-

olds are modified in an iterative manner, and the

‘‘unclassified’’ examples are again presented to the

neural network (for details cf. [42]).

6. Application to circulation heaters

To show the abilities of the second network, the

following virtual sequence has been considered (Table

3); the step numbers refer to Figs. 10, 12, 13:
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Fig. 13. Combined effects of viscosity and fouling on the weights (viscosity decrease and fouling).
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Fig. 17 shows that when the classifier is not sensitive,

it can detect the large drifts (drift #3 and #4), but not

the small drifts.

When the sensitivity is increased, it is possible to

detect the other drifts, but not to discriminate all of

them; drifts #1 and #2 are considered as the first steps of

drift #3 or #4 (Fig. 18).

It is possible to detect all the drifts by increasing

again the sensitivity (Fig. 19).

In this last case, all the 16 combinations of connec-

tion weights, that correspond to the 16 drifts, have been

detected. This proves that, even though the effects on the

outlet fluid temperature are similar, fouling and viscosity

modification have not the same effect on the connection

weights. Hence, it can be concluded that the connection

weights are trustful parameters to survey the current

functioning of the heater.

Once the classes have been labeled, the classifier is

frozen; i.e. neither new prototypes nor classes are cre-

ated. So, the classifier is used as a normal classifier: when

a new input vector is presented, it is associated with the

nearest prototype and to its class. A quite large mem-

bership degree of the input vector to its associated class

indicates that the present drift is actually similar to the

previously detected drift. On the contrary, a quite small

membership degree indicates that a new kind of drift

occur. In practice, one would have to identify, on the

ground, the new drift and should allow the classifier to

Table 3

Definition of the considered drifts

Clean

heater

Fouling (drift #1) Clean

heater

Increasing viscosity (drift #2)

Step 1 Step 2 Step 3 Step 4 Step 1 Step 2 Step 3 Step 4

Id. # 1–20 21–40 41–60 61–80 81–100 101–120 121–140 141–160 161–180 181–200

Fouling and increasing viscosity (drift #3) Fouling and decreasing viscosity (drift #4)

Step 1 Step 2 Step 3 Step 4 Step 1 Step 2 Step 3 Step 4

Id. # 201–220 221–240 241–260 261–280 281–300 301–320 321–340 341–360 361–380 381–400

0 100 200 300 400
0

1
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4

5
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7

Identification number

Classes

Fig. 17. Detection of large drifts.
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Fig. 16. Schematic of the ‘‘classification without fusion’’ stage.
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evolve accordingly (to create a new prototype and a new

class).

This shows that, during exploitation of the circula-

tion heater, if the membership degree of an input vector

to one of the classes that correspond to fouling is high,

fouling is presently occurring in the circulation heater.

7. Conclusions

It has been shown that artificial neural networks can

be successfully applied to monitor electrical circulation

heaters and to discriminate fouling from viscosity

modification. Two networks are used, the first one re-

alizes the online identification of the system and the

second one detects deviations and characterizes drifts.

It has been shown that identification of the system is

only possible when enough information is contained in

the sliding identification window.

A MISO model has been determined for the circu-

lation heater. This model has been used to show that the

connection weights of the model are trustful parameters

for the determination of the functioning of the heater. It

has been shown that the combinations of all the weights

of the neural model depend on the origin of the drift

(fouling, viscosity modification, . . .). All these different

combinations are detected by a neural network classifier

(an improved CDL neural network) when the sensitivity

of this network is well defined.

Ongoing studies address the experimental imple-

mentation of the system. Future studies will address heat

exchangers that must be considered as MIMO (multiple

inputs–mass flow rates and inlet temperatures––multiple

outputs–outlet temperatures) systems.
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